
EGCG antagonizes Bortezomib cytotoxicity in prostate cancer cells by an autophagic mechanism

Alice Modernelli^{1,2#}, Valeria Naponelli^{1-3#}, Maria Giovanna Troglio¹, Martina Bonacini¹, Ileana Ramazzina¹⁻³, Saverio Bettuzzi^{1-3*} and Federica Rizzi^{1-3*}.

¹Department of Biomedicine, Biotechnology and Translational Research, University of Parma, Via Volturno 39/a, 43125 Parma, Italy; ²Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy; ³National Institute of Biostructure and Biosystems (INBB), Viale Medaglie d'Oro 305, 00136 Rome, Italy.

^{*} Corresponding authors: Federica Rizzi, e-mail: federica.rizzi@unipr.it; Saverio Bettuzzi, e-mail: saverio.bettuzzi@unipr.it.

Supplementary Figure 1 – Dose-response curve of EGCG. PC3 cells were treated 48 hours with increasing concentrations of EGCG. Percentage of PC3 cell viability was determined by WST-1 assay. Data are expressed as mean \pm SD of three determinations in triplicate. The dose-response curve was generated and IC₅₀ value was determined by non-linear regression analysis.

[#] These authors contributed equally to the article.